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Comment on “Jamming at zero temperature and zero applied stress: The epitome of disorder”
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O’Hern, Silbert, Liu, and Nage[Phys. Rev. E.68, 011306(2003] claim that a special poind of a
“lamming phase diagram(in density, temperature, stress spaiserelated to random close packing of hard
spheres and that it represents, for their suggested definitions of jammed and random, the recently introduced
maximally random jammed state. We point out several difficulties with their definitions and question some of
their claims. Furthermore, we discuss the connections between their algorithm and other hard-sphere packing
algorithms in the literature.
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I. INTRODUCTION regards to jamming. Indeed, the singular nature of the hard-

Jammed random packings of hard particles have been a sphere potential is crucial becau_se it enables one to be pre-
. X g : se about the concept of “jamming.” Recently, three hierar-
continue to be a subject of intense interest. The lack of prezyicayly ordered jamming categories have been introduced
cise definitions of both “jammed” and “random” have been a[z]: local, collective and strict jamming Each successive

hindrance in the field, and recently gfforts have emerged th‘%ategory progressively relaxes the boundary conditions im-
have attempted to correct these deficienflesy). In particu-  posed on the particle displacements. These definitions are
lar, employing these new definitions, it has been shown thajery intuitive and completelygeometric and are closely
the venerable random close-pack®CP) state is ill defined  |inked to definitions of “rigid” or “stable” packings appear-
but can be replaced by the well-defined notion of a maxiing in the mathematics literatuié, 7).
mally random jammedMRJ) state[1]. O’Hern, Silbert, Liu, OSLN’s definition of jamming simply states that the con-
and Nagel(OSLN) [4] have recently written an interesting figuration of particles is at a stab{strict) energy minimum.
paper[4] that proposes a unified view of jamming for a va- Such a definition is dependent on the particular interparticle
riety of physical systems, including hard-sphere packings. potential, and thus it obscures the relevant packing geometry
OSLN acknowledge the weaknesses of the conventiongexclusion-volume effecjs Furthermore, the distinctions be-
RCP state as stated in R¢t], but redefine MRJwhile still  tween different jamming categories is critical, especially if
calling it RCP by proposing new definitions for what con- one is trying to determine the density of the MRJ state
stitutes a jammed and random systih Given the subtlety Specifically, this density will generally be higher the more
of the problem, new definitions of “jammed” and “random” démanding the jamming category is. Clearly, OSLN do not

must be held to high mathematical standards in order to sugfliStinguish between different degrees or levels of jamming.

plant existing ones. In this Comment, we question whetheVVe have recently demonstrated that the distinction between

OSLN's “cleaner” definitions for these terms meet such Stanpollec_:tive and str_ict ja_mming i_s impqrtant even for very large
dards. We also take issue with their claim to have generateaa?:k'nggéflipec.'a"y mdtwo ‘;'.'mens.'of‘.ﬂ- h h
unbiased and universal results of relevance to random sphere " °" » ajammed configuration is one where there are

packings. Finally, we discuss the relationships between theff© zer.o-frequency' modes of the Hessigp matrix of the .total
algorithm and other packing algorithms. potential energy with respect to the positions of the particles

(the dynamical matrix while keeping the periodic unit cell
[l. WHAT IS “JAMMED"? fixed Our definition of strict jamming relaxes this require-
ment and includes the lattice vectors as additional degrees of

OSLN question whether the hard-sphere system is “phySig.oqqom(3]. As explained in detail in Ref9], the Hessian

cal” and therefore resort to studying particle systems Withconsists of two parts, a negative definiteess matrixand a
soft-sphere interactions to mimic hard-particle packings. Th%ositive semidefinitesytiffness matrix OSLN’s definition of
latter is inherently a geometrical problem. In fact, there is ammed means simply that the Hessian is positive definite at
simple and rigorous geometrical approach to jamming e energy minimum. A precise phrase for this istableor
hard-sphere systems that is not only well defined, but as WEtrict (local) energy minimumand we see no point in rede-

show below, is closely related to OSLN's jamming paint — ining this elementary concept. In fact, according to OSLN,

Although the hard-sphere potential is an idealization, it 'Sany stable energy minimum represents a jammed configura-

no less physical than any soft-sphere potential, especially iﬂon, and it is not possible to relate this ideagackingcon-

cepts without numerous additional assumptions about the
form of the pair potential and the interparticle distances at
*Electronic address: torquato@electron.princeton.edu the energy minimum.
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Although OSLN point out themselves that our definitions strictly jammed because OSLN keep the lattice vectors fixed
of jamming and MRJ are fohard-sphere packingsthey  during energy minimization.
claim to replace them with a “cleaner definition,” which ap-
plies only to systems ofsoft spheresThe two definitions
cannot directly be compared as they apply to different sys- 1. WHAT IS “RANDOM™?
tems. However, OSLN themselves clearly imply that their

“jammed” soft-sphere systems and “jammed” hard-sphere We agree that the maximum of an appropriate en'trop|c
metric would be a potentially useful way to characterize the

packings are related, by referring to other works on hard- ndomness of a packing and therefore the MRJ $EZE

sphere systems. For example, they claim a direct relatio | 4 .
between their special poidtand RCP of hard spheres in Sec. HOWeVer, as pointed out in Refl2], a substantial hurdle to

Il D of Ref. [4]. The basic idea, as OSLN explain, is that oneP€ overcome is the necessity to generate all possible jammed
“can approach the hard sphere by making the potentia$tates or, at Ieast, a representative sample of sgch states in an
harder and harder[to] produce a limiting hard sphere unbiased fashion using a “universal” protocol in the large-
value.” However, they question whether the hard-sphergystem limit. Even if such a protocol could be developed,
limit is well defined and “would argue that hard spheres arhowever, the issue of what weights to assign the resulting
a singular limit and thus unphysical” and that “one shouldconfigurations remains. Moreover, there are other fundamen-
therefore concentrate on softer potentials for which unamtal problems with entropic measures, as we discuss below,

biguous definitions can be constructed.” including its significance for two-dimensional monodisperse
To demonstrate that the limit is well defined, let us firsthard disk packings.
define acollectively jammed sphere packihg be any non- According to OSLN, maximally random is defined by

overlapping configuration of hard spheres in which no subsetwhere the entropy of initial states is maximum” and implies
of particles can continuously be displaced so that its memthat this is a universal measure of disorder. It is not clear
bers move out of contact with one another and with the reexactly what the authors mean by entropy and h@w
mainder se{while maintaining nonoverlgg2]. The follow-  whethej it can be measured for “initial states.” It is not
ing theorem 9] shows that near the “jamming thresholg, obvious that one can relate the “randomness” of final
as defined in Sec. Il B in Ref4], the jamming of particle configurationgwhich is what OSLN are analyzingo that of
systems as defined by OSLN is directly related to this defitheinitial configurations. It appears OSLN’s rationale is that
nition of collective jamming in hard-sphere packings. their algorithm goes to the “nearest” energy minimum from a

Theorem Consider an interparticle potential that is con- given initial configuration. Does this process preserve “en-
tinuous and strictly monotonically decreasing aroupe D tropy” or randomness? Clearly, if one used, for example,
and vanishes for;>D+4. If in a finite configuration of global energy minimization, one would obtain very different
particles interacting with such a potential, all interacting.,  results. Furthermore, entropy is a concept inherently related
closer thenD+ §) particles are a distand® apart, and the to distributions of configurations. However, one classifies
configuration is a stable local energy minimum, then the congparticular final configurationgpacking$ as random or dis-
figuration corresponds to a collectively jammed packing ofordered, and by considering a given configuration, one can
hard spheres with diametér. devise a procedure for quantitatively measurianging order

If one relaxes the condition that all interacting particlesmetricg how disordered or ordered it is. This distinction be-
are exactly at distande apart and instead asks only that the tween distributions of configurations and particular configu-
minimum interparticle distance He, then for a sufficiently rations is an important one that OSLN do not make.
small § one can provg10] that the above sphere packing is  The MRJ state is defined ji] as the jammed state which
almost collectively jammedi.e., it is trapped in a small minimizes a given order metrig. OSLN suggest their inter-
neighborhood of the initial configuratigi8]). This theorem pretation of maximally random as superior because using
implies that the packings studied in Ré#l] that are very order metrics “will always be subject to uncertainty since
slightly above the “jamming thresholdp, are indeed closely one never knows if one has calculated the proper order pa-
related to collectively jammed ideal packings of spheres ofameter.” Therefore, OSLN believe that they have identified
diameterD =0 (polydispersity is trivial to incorporajeAll the proper, unique, measure of ordezlated to entropy We
of these considerations call into question the value of a defiwish to stress the difference betweewell-defined and
nition of jamming that hinges on eigenvalues of dynamicalunique as the two seem to be blurred in Rgf]. The MRJ
matrices. state is well-defined in that for a particular choice of jam-

Finally, it is important to note that despite the fact that ourming category and order metric it can be identified unam-
definition of collective jamming above calls for virtual dis- biguously. For a finite system, it will consist of a discrete set
placing (groups of particles, one can in fact rigorously test (possibly ong of configurations, becoming more densely
for our hard-particle jamming categories using linear pro-populated as the system becomes larger. At least for collec-
gramming[3], without what OSLN call “shifting particles,” tive and strict jamming in three dimensions, a variety of
even for very large disordered packin@j. We have in fact sensible order metrics seem to produce an MRJ state near
communicated to OSLN the resulf41] of our algorithm ¢=0.64[12], the traditionally accepted density of the RCP
applied to several sample packings provided by them. Irstate.
short, our algorithm verified that OSLN’s systems near However, thedensityof the MRJ state should not be con-
were indeed nearly collectively jammeédithin a very small  fused with the MR & tateitself. It is possible to have a rather
tolerancg when viewed as packings. However, they were notordered packing at this very same density; for example, a
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jammed but vacancy-diluted fcc lattice packifi@]. Thisis  ing or quenching rate in molecular systems. Both also imply
why the two-parameter description of packings in terms ofthat this makes their algorithm universal or superior to other
the density¢ and order metriap, as in Ref.[1], is not only  algorithms and that thevell-defined results they obtain are
useful, but actually necessary. somehow special. Most sensible algorithms will in fact pro-
OSLN'’s description of order implies a direct relation be- duce a well-defined density in the limit of large systems
tween probability densities and randomness—i.e., that thiven a choice of algorithmic parameters. For example, by
most probablg13] configurations represent the most disor-¢hanging the expansion rate in the Lubachevsky-Stillinger
dered state. In this sense, one expects that the density 8t30rithm, one can achieve final densities for spheres any-
jammed configurations, when viewed as a three-dimensiondYhere in the range from 0.64ast expansionto 0.74(very
plot over theg-y plane, will be very strongly peaked around slow expansio) as clearly illustrated in Fig.(3) in Ref.[1].

the MRJ point for very large systems, just as the probabilityTherefore, if we followed the logic of OSLN, we could claim

distribution curves in Fig. 6 in Ref[4] are very peaked ghuitoarmigr?rgbegég th:ékri?lng; rgﬁtrﬁﬁ]egascﬁdsﬂicg F;%E'olfn
around ¢=0.64. As OSLN suggest themselves, this might P a9 P g alg P

explain why several different packing procedures yield Simi_generatmg a variety of packings, in both density and the

lar hard-particl ki d : diti hi amount of order. How can one ascertain that the packings
ar hard-particle packings under appropriate conditions, hisg o produces are “most random” if there are no other
torically designated as RCP.

are , . jammed packings to compare to?

However, this is far from being a closed questid]. OSLN use two main procedures to generate final configu-
Consider two-dimensional monodisperse circular disk packrations. The first procedure is to choose a density and then
|ngS as an example. It is well known that tWO'dimenSionaluse Conjugate gradients to f|nd a nearby energy minimum,
analogs of three-dimensional computational and experimerstarting from a randomly generated initial configuratidn
tal protocols that lead to putative RCP states result in disk o) as described in Sec. Il A in Reff4]. Using this proce-
packings that are highly crystalline, forming rather large tri-dure, OSLN sampled inherent structufég) at fixed density
angular domainggraing [15]. Because such highly ordered to measure the fractiof)(¢) of states that had nonzero bulk
packings are the most probable for thgsetocols OSLN's  and shear moduli, and showed tffathas a strong system-
entropic measure would identify these as the most disorsjze dependence with its derivative becomingfanction in
dered, a dubious proposition. An appropriate order metric, ofhe large-system limit. It is important to note that this proce-
the other hand, is capable of identifying a particular configuqure as such has little or nothing to do with hard-sphere
ration (not an ensemble of configurationsf considerably  packings, especially for the kind of soft potentials
lower density(e.g., a jammed diluted triangular latticthat > 3/2) that OSLN study. Many stable energy minima will be
is consistent with our intuitive notions of maximal disorder. completely unrelated to packings, and especially not to those
However, typical packing protocols would almost never 9eNesignated as MRJ states.
erate such disordered disk configurations because of their og| N used a second procedure to study the mechanical
inherent bias toward undiluted crystallization. This brings usyng structural properties of systems near the onset of jam-
to OSLN's claim that they have devised an unbiased univerming .. In this procedure, a configuration is compresged
sal protocol, to which we now turn our attention. decompressgdusing very small steps in density until the

bulk and shear moduli vanishe@r nonzero moduli de-
velop), as described in Sec. Il B in Ref4]. We now dem-

IV. UNIVERSAL, HARD, AND SOFT ALGORITHMS onstrate that this procedure is closely related to Zinchenko’s

algorithm[16] for generating hard-sphere packings. Start at

In this section, we focus on the algorithms used by OSLNow density with a set of nonoverlapping spheres of diameter
and point out why they are neither universal nor superior tor. Both algorithms then slowly grow the particl@@SLN in
other procedures. We point out the close relations betweesmall increments, Zinchenko continuouslyhile moving the
OSLN's algorithm for generating configurations near the on-particles to avoid overlapl8]. In the Zinchenko algorithm,
set of jamming and the Zinchenko hard-sphere packing algosne strictly maintains the contact between particles as soon
rithm [16]. Furthermore, we question OSLN'’s implication as they touch, which requires solving a system of ODE’s
that using one kind of interaction potent{alith three differ-  containing the rigidity matrix of the packingg] to find the
ent exponenjsand one algorithm amounts to exploring the necessary particle displacements. OSLN, on the other hand,
space of all jammed configurations in an unbiased manneuse conjugate gradient€G’s) to reminimize the potential
This puts into doubt the claimed universality of the palnt energy, which will simply push the particles just

By fixing the interaction potential, initial density, and en- nonoverlapping—i.e., almost in contact. This procedure con-
ergy minimization(conjugate gradieptlgorithm, OSLN ob- tinues in both algorithms until no further densification is
tain a well-defined collection of final configurations with overlap.
well-defined(not uniqué properties. In essence, OSLN make  Accordingly, it is not surprising the packing configura-
their algorithm devoid of tunable parameters by simplytions close to¢. obtained in Ref[4] closely resembléin
choosing specific and fixed values for them. Both thepacking fraction, amorphous character, coordination,) etc.
Zinchenko and OSLN algorithms are “dynamics indepen-spackings generated via a variety of bonafide hard-sphere al-
dent,” in the sense that there is no tunable parameter for thgorithms(and experiment$19]). In particular, very similar
rate of compression, which would be an analog of the coolpackings are produced with the Lubachevsky-Stillin@es)
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algorithm [20,27 (with sufficiently high expansion rates [emphasis addédphase space equally,” all that their first
and the Zinchenko algorithrfil6]. OSLN criticize the LS  algorithm manages to explore is the space of energy minima
algorithm for changing the density in a dynamic fashion. Thefor the particular chosen interaction potential. By comparing
stated advantage of the OSLN protocol is that one canhree different exponenta, OSLN conclude that the exact
“quench the system to the final state within a fixed energyform of the potential is not important. However, a much
landscape” since “the density is always held constant.” Wamore convincing picture would have been made if they in-
are very puzzled by this last claim in light of their admission stead triedgualitatively different kinds of interaction poten-
(in Sec. Il B of Ref.[4]) that they slowly change the density tials, rather than simply changing the curvature of the poten-
of the packing to findg.. In fact, OSLN do not seem to tial at the contact point. Otherwise, why focus on continuous
clearly distinguish between the two rather different proce-nteraction potentials at all? Since it is geometie., the
dures they employ: the first for finding inherent structuigs nonoverlap condition on the spherical corésat is crucial,

a fixed density and the the jamming threshol@vhich  the hard-sphere system offers a far “cleaner” system to study
searches in densityFigure 6 of Ref[4], which supposedly when trying to understand the special paint

represents the distributions of jamming threshotfis de-
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