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O’Hern, Silbert, Liu, and Nagel[Phys. Rev. E.68, 011306 (2003)] claim that a special pointJ of a
“jamming phase diagram”(in density, temperature, stress space) is related to random close packing of hard
spheres and that it represents, for their suggested definitions of jammed and random, the recently introduced
maximally random jammed state. We point out several difficulties with their definitions and question some of
their claims. Furthermore, we discuss the connections between their algorithm and other hard-sphere packing
algorithms in the literature.
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I. INTRODUCTION

Jammed random packings of hard particles have been and
continue to be a subject of intense interest. The lack of pre-
cise definitions of both “jammed” and “random” have been a
hindrance in the field, and recently efforts have emerged that
have attempted to correct these deficiencies[1–3]. In particu-
lar, employing these new definitions, it has been shown that
the venerable random close-packed(RCP) state is ill defined
but can be replaced by the well-defined notion of a maxi-
mally random jammed(MRJ) state[1]. O’Hern, Silbert, Liu,
and Nagel(OSLN) [4] have recently written an interesting
paper[4] that proposes a unified view of jamming for a va-
riety of physical systems, including hard-sphere packings.

OSLN acknowledge the weaknesses of the conventional
RCP state as stated in Ref.[1], but redefine MRJ(while still
calling it RCP) by proposing new definitions for what con-
stitutes a jammed and random system[5]. Given the subtlety
of the problem, new definitions of “jammed” and “random”
must be held to high mathematical standards in order to sup-
plant existing ones. In this Comment, we question whether
OSLN’s “cleaner” definitions for these terms meet such stan-
dards. We also take issue with their claim to have generated
unbiased and universal results of relevance to random sphere
packings. Finally, we discuss the relationships between their
algorithm and other packing algorithms.

II. WHAT IS “JAMMED”?

OSLN question whether the hard-sphere system is “physi-
cal” and therefore resort to studying particle systems with
soft-sphere interactions to mimic hard-particle packings. The
latter is inherently a geometrical problem. In fact, there is a
simple and rigorous geometrical approach to jamming in
hard-sphere systems that is not only well defined, but as we
show below, is closely related to OSLN’s jamming pointJ.

Although the hard-sphere potential is an idealization, it is
no less physical than any soft-sphere potential, especially in

regards to jamming. Indeed, the singular nature of the hard-
sphere potential is crucial because it enables one to be pre-
cise about the concept of “jamming.” Recently, three hierar-
chically ordered jamming categories have been introduced
[2]: local, collective, and strict jamming. Each successive
category progressively relaxes the boundary conditions im-
posed on the particle displacements. These definitions are
very intuitive and completelygeometric, and are closely
linked to definitions of “rigid” or “stable” packings appear-
ing in the mathematics literature[6,7].

OSLN’s definition of jamming simply states that the con-
figuration of particles is at a stable(strict) energy minimum.
Such a definition is dependent on the particular interparticle
potential, and thus it obscures the relevant packing geometry
(exclusion-volume effects). Furthermore, the distinctions be-
tween different jamming categories is critical, especially if
one is trying to determine the density of the MRJ state[8].
Specifically, this density will generally be higher the more
demanding the jamming category is. Clearly, OSLN do not
distinguish between different degrees or levels of jamming.
We have recently demonstrated that the distinction between
collective and strict jamming is important even for very large
packings, especially in two dimensions[8].

For OSLN, a jammed configuration is one where there are
no zero-frequency modes of the Hessian matrix of the total
potential energy with respect to the positions of the particles
(the dynamical matrix), while keeping the periodic unit cell
fixed. Our definition of strict jamming relaxes this require-
ment and includes the lattice vectors as additional degrees of
freedom[3]. As explained in detail in Ref.[9], the Hessian
consists of two parts, a negative definitestress matrixand a
positive semidefinitestiffness matrix. OSLN’s definition of
jammed means simply that the Hessian is positive definite at
the energy minimum. A precise phrase for this is astableor
strict (local) energy minimum, and we see no point in rede-
fining this elementary concept. In fact, according to OSLN,
any stable energy minimum represents a jammed configura-
tion, and it is not possible to relate this idea topackingcon-
cepts without numerous additional assumptions about the
form of the pair potential and the interparticle distances at
the energy minimum.*Electronic address: torquato@electron.princeton.edu
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Although OSLN point out themselves that our definitions
of jamming and MRJ are forhard-sphere packings, they
claim to replace them with a “cleaner definition,” which ap-
plies only to systems ofsoft spheres. The two definitions
cannot directly be compared as they apply to different sys-
tems. However, OSLN themselves clearly imply that their
“jammed” soft-sphere systems and “jammed” hard-sphere
packings are related, by referring to other works on hard-
sphere systems. For example, they claim a direct relation
between their special pointJ and RCP of hard spheres in Sec.
II D of Ref. [4]. The basic idea, as OSLN explain, is that one
“can approach the hard sphere by making the potential
harder and harder…[to] produce a limiting hard sphere
value.” However, they question whether the hard-sphere
limit is well defined and “would argue that hard spheres are
a singular limit and thus unphysical” and that “one should
therefore concentrate on softer potentials for which unam-
biguous definitions can be constructed.”

To demonstrate that the limit is well defined, let us first
define acollectively jammed sphere packingto beany non-
overlapping configuration of hard spheres in which no subset
of particles can continuously be displaced so that its mem-
bers move out of contact with one another and with the re-
mainder set(while maintaining nonoverlap) [2]. The follow-
ing theorem[9] shows that near the “jamming threshold”fc,
as defined in Sec. II B in Ref.[4], the jamming of particle
systems as defined by OSLN is directly related to this defi-
nition of collective jamming in hard-sphere packings.

Theorem. Consider an interparticle potential that is con-
tinuous and strictly monotonically decreasing aroundr ij =D
and vanishes forr ij .D+d. If in a finite configuration of
particles interacting with such a potential, all interacting(i.e.,
closer thenD+d) particles are a distanceD apart, and the
configuration is a stable local energy minimum, then the con-
figuration corresponds to a collectively jammed packing of
hard spheres with diameterD.

If one relaxes the condition that all interacting particles
are exactly at distanceD apart and instead asks only that the
minimum interparticle distance beD, then for a sufficiently
small d one can prove[10] that the above sphere packing is
almost collectively jammed(i.e., it is trapped in a small
neighborhood of the initial configuration[3]). This theorem
implies that the packings studied in Ref.[4] that are very
slightly above the “jamming threshold”fc are indeed closely
related to collectively jammed ideal packings of spheres of
diameterD=s (polydispersity is trivial to incorporate). All
of these considerations call into question the value of a defi-
nition of jamming that hinges on eigenvalues of dynamical
matrices.

Finally, it is important to note that despite the fact that our
definition of collective jamming above calls for virtual dis-
placing (groups of) particles, one can in fact rigorously test
for our hard-particle jamming categories using linear pro-
gramming[3], without what OSLN call “shifting particles,”
even for very large disordered packings[8]. We have in fact
communicated to OSLN the results[11] of our algorithm
applied to several sample packings provided by them. In
short, our algorithm verified that OSLN’s systems nearfc
were indeed nearly collectively jammed(within a very small
tolerance) when viewed as packings. However, they were not

strictly jammed because OSLN keep the lattice vectors fixed
during energy minimization.

III. WHAT IS “RANDOM”?

We agree that the maximum of an appropriate “entropic”
metric would be a potentially useful way to characterize the
randomness of a packing and therefore the MRJ state[12].
However, as pointed out in Ref.[12], a substantial hurdle to
be overcome is the necessity to generate all possible jammed
states or, at least, a representative sample of such states in an
unbiased fashion using a “universal” protocol in the large-
system limit. Even if such a protocol could be developed,
however, the issue of what weights to assign the resulting
configurations remains. Moreover, there are other fundamen-
tal problems with entropic measures, as we discuss below,
including its significance for two-dimensional monodisperse
hard disk packings.

According to OSLN, maximally random is defined by
“where the entropy of initial states is maximum” and implies
that this is a universal measure of disorder. It is not clear
exactly what the authors mean by entropy and how(or
whether) it can be measured for “initial states.” It is not
obvious that one can relate the “randomness” of thefinal
configurations(which is what OSLN are analyzing) to that of
the initial configurations. It appears OSLN’s rationale is that
their algorithm goes to the “nearest” energy minimum from a
given initial configuration. Does this process preserve “en-
tropy” or randomness? Clearly, if one used, for example,
global energy minimization, one would obtain very different
results. Furthermore, entropy is a concept inherently related
to distributions of configurations. However, one classifies
particular final configurations(packings) as random or dis-
ordered, and by considering a given configuration, one can
devise a procedure for quantitatively measuring(using order
metrics) how disordered or ordered it is. This distinction be-
tween distributions of configurations and particular configu-
rations is an important one that OSLN do not make.

The MRJ state is defined in[1] as the jammed state which
minimizes a given order metricc. OSLN suggest their inter-
pretation of maximally random as superior because using
order metrics “will always be subject to uncertainty since
one never knows if one has calculated the proper order pa-
rameter.” Therefore, OSLN believe that they have identified
the proper, unique, measure of order(related to entropy). We
wish to stress the difference betweenwell-defined and
unique, as the two seem to be blurred in Ref.[4]. The MRJ
state is well-defined in that for a particular choice of jam-
ming category and order metric it can be identified unam-
biguously. For a finite system, it will consist of a discrete set
(possibly one) of configurations, becoming more densely
populated as the system becomes larger. At least for collec-
tive and strict jamming in three dimensions, a variety of
sensible order metrics seem to produce an MRJ state near
f<0.64 [12], the traditionally accepted density of the RCP
state.

However, thedensityof the MRJ state should not be con-
fused with the MRJstateitself. It is possible to have a rather
ordered packing at this very same density; for example, a
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jammed but vacancy-diluted fcc lattice packing[12]. This is
why the two-parameter description of packings in terms of
the densityf and order metricc, as in Ref.[1], is not only
useful, but actually necessary.

OSLN’s description of order implies a direct relation be-
tween probability densities and randomness—i.e., that the
most probable[13] configurations represent the most disor-
dered state. In this sense, one expects that the density of
jammed configurations, when viewed as a three-dimensional
plot over thef-c plane, will be very strongly peaked around
the MRJ point for very large systems, just as the probability
distribution curves in Fig. 6 in Ref.[4] are very peaked
aroundf<0.64. As OSLN suggest themselves, this might
explain why several different packing procedures yield simi-
lar hard-particle packings under appropriate conditions, his-
torically designated as RCP.

However, this is far from being a closed question[14].
Consider two-dimensional monodisperse circular disk pack-
ings as an example. It is well known that two-dimensional
analogs of three-dimensional computational and experimen-
tal protocols that lead to putative RCP states result in disk
packings that are highly crystalline, forming rather large tri-
angular domains(grains) [15]. Because such highly ordered
packings are the most probable for theseprotocols, OSLN’s
entropic measure would identify these as the most disor-
dered, a dubious proposition. An appropriate order metric, on
the other hand, is capable of identifying a particular configu-
ration (not an ensemble of configurations) of considerably
lower density(e.g., a jammed diluted triangular lattice) that
is consistent with our intuitive notions of maximal disorder.
However, typical packing protocols would almost never gen-
erate such disordered disk configurations because of their
inherent bias toward undiluted crystallization. This brings us
to OSLN’s claim that they have devised an unbiased univer-
sal protocol, to which we now turn our attention.

IV. UNIVERSAL, HARD, AND SOFT ALGORITHMS

In this section, we focus on the algorithms used by OSLN
and point out why they are neither universal nor superior to
other procedures. We point out the close relations between
OSLN’s algorithm for generating configurations near the on-
set of jamming and the Zinchenko hard-sphere packing algo-
rithm [16]. Furthermore, we question OSLN’s implication
that using one kind of interaction potential(with three differ-
ent exponents) and one algorithm amounts to exploring the
space of all jammed configurations in an unbiased manner.
This puts into doubt the claimed universality of the pointJ.

By fixing the interaction potential, initial density, and en-
ergy minimization(conjugate gradient) algorithm, OSLN ob-
tain a well-defined collection of final configurations with
well-defined(not unique) properties. In essence, OSLN make
their algorithm devoid of tunable parameters by simply
choosing specific and fixed values for them. Both the
Zinchenko and OSLN algorithms are “dynamics indepen-
dent,” in the sense that there is no tunable parameter for the
rate of compression, which would be an analog of the cool-

ing or quenching rate in molecular systems. Both also imply
that this makes their algorithm universal or superior to other
algorithms and that the(well-defined) results they obtain are
somehow special. Most sensible algorithms will in fact pro-
duce a well-defined density in the limit of large systems
given a choice of algorithmic parameters. For example, by
changing the expansion rate in the Lubachevsky-Stillinger
algorithm, one can achieve final densities for spheres any-
where in the range from 0.64(fast expansion) to 0.74(very
slow expansion), as clearly illustrated in Fig. 2(a) in Ref. [1].
Therefore, if we followed the logic of OSLN, we could claim
that any number in that range represents a special point. In
our opinion, a good packing algorithm should be capable of
generating a variety of packings, in both density and the
amount of order. How can one ascertain that the packings
one produces are “most random” if there are no other
jammed packings to compare to?

OSLN use two main procedures to generate final configu-
rations. The first procedure is to choose a density and then
use conjugate gradients to find a nearby energy minimum,
starting from a randomly generated initial configurationsT
=`d, as described in Sec. II A in Ref.[4]. Using this proce-
dure, OSLN sampled inherent structures[17] at fixed density
to measure the fractionf jsfd of states that had nonzero bulk
and shear moduli, and showed thatf j has a strong system-
size dependence with its derivative becoming ad function in
the large-system limit. It is important to note that this proce-
dure as such has little or nothing to do with hard-sphere
packings, especially for the kind of soft potentialssa
ù3/2d that OSLN study. Many stable energy minima will be
completely unrelated to packings, and especially not to those
designated as MRJ states.

OSLN used a second procedure to study the mechanical
and structural properties of systems near the onset of jam-
ming fc. In this procedure, a configuration is compressed(or
decompressed) using very small steps in density until the
bulk and shear moduli vanished(or nonzero moduli de-
velop), as described in Sec. II B in Ref.[4]. We now dem-
onstrate that this procedure is closely related to Zinchenko’s
algorithm [16] for generating hard-sphere packings. Start at
low density with a set of nonoverlapping spheres of diameter
s. Both algorithms then slowly grow the particles(OSLN in
small increments, Zinchenko continuously) while moving the
particles to avoid overlap[18]. In the Zinchenko algorithm,
one strictly maintains the contact between particles as soon
as they touch, which requires solving a system of ODE’s
containing the rigidity matrix of the packing[3] to find the
necessary particle displacements. OSLN, on the other hand,
use conjugate gradients(CG’s) to reminimize the potential
energy, which will simply push the particles just
nonoverlapping—i.e., almost in contact. This procedure con-
tinues in both algorithms until no further densification is
overlap.

Accordingly, it is not surprising the packing configura-
tions close tofc obtained in Ref.[4] closely resemble(in
packing fraction, amorphous character, coordination, etc.)
packings generated via a variety of bonafide hard-sphere al-
gorithms (and experiments[19]). In particular, very similar
packings are produced with the Lubachevsky-Stillinger(LS)
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algorithm [20,21] (with sufficiently high expansion rates)
and the Zinchenko algorithm[16]. OSLN criticize the LS
algorithm for changing the density in a dynamic fashion. The
stated advantage of the OSLN protocol is that one can
“quench the system to the final state within a fixed energy
landscape” since “the density is always held constant.” We
are very puzzled by this last claim in light of their admission
(in Sec. II B of Ref.[4]) that they slowly change the density
of the packing to findfc. In fact, OSLN do not seem to
clearly distinguish between the two rather different proce-
dures they employ: the first for finding inherent structures(at
a fixed density) and the the jamming threshold(which
searches in density). Figure 6 of Ref.[4], which supposedly
represents the distributions of jamming thresholdsfc, de-
finedby the secondprocedure, is obtained by differentiating
the distribution generated with thefirst procedure, with no
clear justification.

Most problematic of all is OSLN’s claim that their results
are universal. Despite the statement that “starting with ran-
domly generatedT=` states guarantees that we sampleall

[emphasis added] phase space equally,” all that their first
algorithm manages to explore is the space of energy minima
for theparticular chosen interaction potential. By comparing
three different exponentsa, OSLN conclude that the exact
form of the potential is not important. However, a much
more convincing picture would have been made if they in-
stead triedqualitativelydifferent kinds of interaction poten-
tials, rather than simply changing the curvature of the poten-
tial at the contact point. Otherwise, why focus on continuous
interaction potentials at all? Since it is geometry(i.e., the
nonoverlap condition on the spherical cores) that is crucial,
the hard-sphere system offers a far “cleaner” system to study
when trying to understand the special pointJ.
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